
HelixMesh: a consensus protocol for IoT
Dmitrii Zhelezov

dz@hlx.ai
Helix Research
Berlin, Germany

Oliver Fohrmann
of@hlx.ai

Helix Research
Berlin, Germany

ABSTRACT
We provide a technical exposition of the HelixMesh protocol and
the underlying DAG-based transaction ledger. The HelixMesh is
optimized for high-throughput IoT networks on the premise that
most transactions carry only a data payload rather than a value
transfer. The consensus algorithm is a novel implementation of
the hybrid on-/off-chain MeshCash framework based on probabilis-
tic peer sampling for the off-chain layer. We further introduce a
flexible “Proof-Of-Contribution” adversarial model which supports
both closed permissioned (with standard BFT assumptions) and
persmissionless (e.g. based on Proof-Of-Work) networks.

CCS CONCEPTS
•Networks→Network protocol design; •Computer systems
organization→ Peer-to-peer architectures; Sensors and actuators.

KEYWORDS
distributed ledger; consensus protocol; byzantine fault tolerance;
IoT

ACM Reference Format:
Dmitrii Zhelezov and Oliver Fohrmann. 2019. HelixMesh: a consensus pro-
tocol for IoT. In 2019 International Electronics Communication Conference
(IECC) (IECC ’ 19), July 7–9, 2019, Okinawa, Japan. ACM, New York, NY,
USA, 7 pages. https://doi.org/10.1145/3343147.3343168

STRUCTURE OF THE PAPER
In Section 1 we motivate our focus on specialized DLT for IoT and
argue that general-purpose blockchains are not the best fit for IoT
use-cases.

Section 2 outlines how the Directed Acyclic Graph (DAG) data
structure can be combined with a consensus protocol in order to
reach global consensus on the transaction log. This part is largely
independent of the consensus protocol per se, but outlines imple-
mentation options and challenges to consider.

In Section 3 we introduce Proof-Of-Contribution (PoC) adver-
sarial model and the protocol communication assumptions.

An in-depth exposition of the on-chain and off-chain consensus
layers of HelixMesh is given in Section 4 and Section 5 respectively.

A brief summary and general discussion is given in Section 6.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
IECC ’ 19, July 7–9, 2019, Okinawa, Japan
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7177-3/19/07. . . $15.00
https://doi.org/10.1145/3343147.3343168

1 INTRODUCTION
The Bitcoin blockchain is considered by many to be the first suc-
cessful example of a Distributed Ledger Technology (DLT) being
deployed and secured by a decentralized network of peers. Efforts
to increase the human usability of the Bitcoin’s underlying DLT (e.g.
Bitcoin Lightening Network, Ethereum, etc.) have focused mostly
on value transfers represented by the underlying cryptocurrency
or a token. To the best of our knowledge, however, there has not
been a similar growth in the development of DLTs for machines,
specifically for interconnected devices, or simply, the Internet of
Things (IoT). In the current article, we describe a new protocol for
IoTs requiring DLTs, the HelixMesh protocol.

Specialized IoT-tailored DLTs should be able to handle the data
streams of billions of devices. On the other hand, each IoT device
(e.g. a sensor) typically consumes little-to-no data itself. Further-
more, all incoming and outgoing connections are typically managed
by a trusted edge server. Such natural clustering introduced by the
network topology allows one to soften the trust requirements nec-
essary for general-purpose scalable blockchains (e.g. Ethereum
2.0). Additionally, since we expect that only a small fraction of
IoT-generated transactions will transfer cryptocurrency value be-
tween addresses (instead, the majority are expected to carry only
data payloads), our design choices depart from the usual general-
purpose blockchains which have been used e.g. for decentralized
and distributed financial applications (e.g. Uniswap or MakerDAO).

By design, fullnodes in the HelixMesh protocol are assumed to
aggregate large volumes of transactions without congesting the
network, thus providing high throughput and availability. On the
other hand, the double-layered consensus framework introduced
in [2] allows one to eventually achieve the required level of safety
in mission-critical applications.

The off-chain layer is inspired by a powerful insight, used in the
Avalanche [10] protocol family, that random peer gossiping can be
turned into a robust consensus protocol stable even under network
churn.

2 DLT OVERVIEW AND SCOPE OF THE
PAPER

Transactions are packed into bundles. Each bundle contains aMerkle
root of the hashes of the parent bundles, so the bundles form a DAG
(directed acyclic graph) with directed edges representing the child-
parent relation between bundles. We ditch a more conventional
block of transactions to emphasize that a bundle can contain hetero-
geneous data packets not limited to the scope of value transactions1.

1E.g. auditable logs of IoT-sourced data streams.

IECC ’ 19, July 7–9, 2019, Okinawa, Japan Dmitrii Zhelezov and Oliver Fohrmann

Each bundle contains an ordered list of transactions2 and has a
height which is the length of the shortest path to the genesis bundle
of the DAG. Given a DAG G, define the round R(k) to be the set of
bundles of height k .

We assume public key infrastructure (PKI). For simplicity, we
assume that for each round k each participating fullnode is iden-
tified by a public key pki and an IP address suitable for duplex
point-to-point communication. IP addresses may change but the
time fullnodes update internal IP tables is assumed to be negligible.

Instead of broadcasting the whole bundle B(k)pki
we assume that

fullnodes submit a binding commitment R(k,pki) (e.g. a Merkle
root of transactions) and the meta information in a header. Such
commitments significantly reduce network traffic and separate the
consensus logic from validation.

The protocol is agnostic with regard to the transaction seman-
tics. Indeed, we believe that a message-driven architecture is bet-
ter suited for data-driven IoT ledgers compared to the widely ac-
cepted approach of a distributed replicated state machine, taken by
Ethereum and most of the general-purpose blockchains. Since this
topic is orthogonal to the consensus protocol, we leave the details
for a separate publication.

The protocol can be broken down into the following steps.
(1) Consensus about the set of commitments {R(k,pki)} in round

k
(2) Ordering R(k,pki), the set of commitments
(3) Obtaining the ordered sequence of transactions with com-

mitment to R(k,pki)
(4) The canonical sequence of transactions is defined by succes-

sive expansion of transactions with commitment to R(k,pki)
in the order defined by (2), skipping contextually invalid
transactions (e.g. double-spends). A pseudocode is given by
Algorithm 1.

Algorithm 1 Generating canonical transactions in round k

1: function TransactionsInRound(Ctx, k)
2: for R ∈ Order(

⋃
i R(k,pki)) do

3: T ← GetAndVerify(R)
4: for tx ∈ T do
5: if IsContextuallyValid(Ctx, tx) then
6: Ctx← Apply(Ctx, tx)
7: Yield(tx)
8: end if
9: end for
10: end for
11: end function

Steps (2) and (4) are local and deterministic routines and thus
always give the same output for each honest node in the network.
Indeed, once an irreversible consensus on which bundles are in-
cluded in the round is reached, a canonical ordering is defined by a
fixed protocol rule. Such a rule provides a deterministic yet hard-to-
game sortition (e.g. using XOR of bundle hashes) for an unordered
set of bundles. Since all honest nodes agree on the sortition rule (it
2Ordering of transactions within a bundle is decided by the fullnode who signs and
publishes the bundle.

is known in advance and dictated by the protocol) as well as on the
(unordered) set of bundles, the ordering is canonical3.

Thus, the output R(k) of Step (1) for round k can be assumed to
be an ordered collection of bundles

B
(k)
1 ,B

(k)
2 , . . . ,B

(k)
r .

In turn, each bundle is an ordered sequence of transactions:

B
(k)
i = T i1 ,T

i
2 ,

Summing up, R(k) uniquely defines a canonically ordered set of
transactions in round k , given by Algorithm 1.

All transactions in R(l) with l < k precede those in R(k), and all
transactions inR(m)withm > k follow after. Thus, when consensus
on R(i) is irreversible for all i ≤ k , all the transactions included in
the bundles up to round k are final and canonically ordered.

The third step assumes data availability which is beyond the
scope of the present paper. For concreteness, the reader may as-
sume that each bundle contains an IPFS link to its contents. Even
such a simplistic solution will provide strong guarantees as long
as there is at least one party seeding the data satisfying the bundle
commitment. In fact, in order to ensure the bundle is accepted by
the network, bundle producers will likely become data seeders for
own bundles.

A more sophisticated approach for securing data availability may
rely on erasure coding and succinct proofs (see e.g. [1]) and further
developments in this active area of research. We omit further details.

Further, if Line 3 of Algorithm 1 detects that a commitment does
not match the transactions contained in the bundle, the fullnode
who signed the commitment is economically punished. The exact
mechanism depends on the protocol implementation and can either
be based on stake slashing or simply on the fact that malformed
bundles are not included in the canonical view.

We will therefore focus solely on Step 1 from now on.

3 COMMUNICATION AND ADVERSARIAL
MODEL

In the Helix Network light clients submit transactions to a fullnode
of choice. The fullnodes are responsible for broadcasting, consensus
and validation. A transaction is accepted by a fullnode after a nego-
tiation protocol with the light client. Once a transaction is accepted
by a fullnode, it has a sender (the light node) and a broker (the
fullnode). The fullnode commits to fair handling of the transaction.
Fullnodes accepting transactions are expected to have a reliable
high-bandwidth internet connection and stay online at their best
effort.

For simplicity, we assume from now on that fullnodes do not
censor out valid incoming transactions. Communication between
fullnodes is done through gossiping on the overlay network. We
assume that each honest node can efficiently sample random peers.

3.1 Synchrony assumptions
For simplicity we assume strong synchrony: a message broadcasted
by an honest node is received by all honest nodes within time δ
(according to the local clock of the sender). The parameter δ is

3Hereafter canonical means that all nodes faithfully following the protocol have the
same output.

HelixMesh: a consensus protocol for IoT IECC ’ 19, July 7–9, 2019, Okinawa, Japan

fixed at the start of the protocol. We believe that HelixMesh has
the same guarantees under a weaker and more realistic assumption
that the network is merely δ -intermittently synchronous, but the
local clocks are δ -synchronized for the majority of honest nodes.
Roughly speaking, it means that the network latency may have
spikes when no messages are delivered, but typically the messages
are delivered fast. For a rigorous definition see [8], Definition 2. We
defer formal proofs to a forthcoming research paper.

Further, we assume that full nodes have local clocks synchronized
with the Coordinated Universal Time (UTC). The actual discrepancy
is concealed in the bounded network delay δ .

The UTC time serves as a universal time beacon, common for all
clients and network participants. It is used to ensure fair ordering
of transactions within bundles and for a steady flow of bundle
rounds: each round has a timeout after which an honest node stops
accepting bundles. UTC synchronization assumption is not essential
to the protocol and may be dropped at the expense of having less
predictable timing for protocol rounds.

According to [3] it takes about 1s to gossip a 1KB message to
90% of the nodes in the Bitcoin network, and Algorand [4] reports
10s for gossiping 1MB blocks. Thus, in a pure gossip-based network
a conservative estimate for δ would be around 15 seconds (compare
to 12 second block time in the Ethereum network).

However, gossiping can be used only as a fall-back for a more
efficient network topology with a few high-throughput network
relayers (by using e.g. bloXroute [7]). In this case, δ can be lowered
to less than a second. The exact value depends on the liveness-safety
trade-offs dictated by the use-case in mind.

We assume that an adversary can withhold messages but cannot
forge signatures.

3.2 PoC adversarial model
The adversarial model we use is a novel generalization of the stan-
dard BFT assumption that at most one third of the actors is ma-
licious. However, it is rarely the case such an assumption can be
guaranteed in practical DLT implementations. First and foremost,
the set of participating nodes is likely to change over time. Next,
typical BFT assumptions do not distinguish between offline and
adversarial node, thus silently assuming that the majority of net-
work nodes always actively participate in the consensus protocol.
In order to address this issue, we use a device we call Proof-Of-
Contribution (PoC). Our adversarial model assumes that in order to
participate in the network any node should submit a “contribution”
to the network, and that over a long run adversaries can contribute
only a fraction of the total network contribution. Formally, we
assume the following. The protocol is split into consecutive inde-
pended rounds (as explained in Section 2. Let q be the parameter
representing maximal Byzantine tolerance of the protocol.

Definition 3.1 (q-byzantine tolerance). For any ϵ > 0

P(Q > (1 + ϵ)qW) ≤ exp
(
−
ϵ2

10
qW

)
, (1)

where Q is the amount of PoC generated by adversarial nodes andW
is the total network PoC generated over the same span of consecutive
rounds.

The probability space is generated by the underlying random
process of the protocol. For deterministic protocols (1) simply de-
generates into Q ≤ qW .

Definition 3.1 is natural for Proof-Of-Work based adversarial
models since the block production can be modelled by a Poisson
process with intensity equal to the hardware hashrate. Then the q-
tolerance corresponds to the assumption that honest nodes control
at least 1 − q of the total network hashrate.

However, such an abstraction works equally well for the classical
BFT assumption if one assumes that during each round network
participants contribute a virtual “membership token” minted at
round start. Indeed, such membership-based PoC seamlessly ac-
commodates network churn. Similarly, Proof-Of-Stake schemes can
be modelled if one assumes that a locked stake generates interest
counted as PoC contribution.

4 CONSENSUS PROTOCOL
4.1 Overview: Hare and Tortoise protocols
The backbone of the consesus protocol is the Meshcash framework
introduced by Bentov et. al. [2]. The Meshcash DAG layers corre-
spond to rounds and suit our setting particularly well. An honest
node increments the round counter from i to i + 1 when her local
clock showsGENESIS_TIME+∆Ri , where ∆R is the round duration
fixed by the protocol. The first (local) time an honest node increases
the layer counter is denoted by starti . By our assumptions all hon-
est nodes start their rounds by starti + δ according to their local
time. Similarly, one may introduce a fixed cutoff for round ends,
but we assume for simplicity that round i ends when round i + 1
starts.

We adopt the mechanism of two separate processeses run in
parallel: an off-chain Hare consensus and a DAG-based Tortoise
consensus protocol. Here off-chain means that the Hare protocol
relies on messages from network peers, discarded once recieved,
and not on the information available in the ledger (i.e. the bundle
DAG). The Tortoise protocol, on the other hand, is on-chain in
the following sense: the protocol output is fully determined by
the information contained in the bundle DAG and no additional
information is required in order to decide which bundle (at least
old enough) is canonical. This is similar to the Nakamoto consenus
of the Bitcoin blockchain.

The Hare consensus will normally terminate in time. When it
does, it acts as an oracle which predicts the output of the Tortoise
consensus protocol. If it does not terminate, then nodes should
await the output of the Tortoise. For its part, the Tortoise depends
only on the local state of the DAG and does not require any addi-
tional communication which renders it well-suited for SPV (Simple
Payment Verification). Of course, the drawback to the Tortoise is
that this protocol may take considerable time before it reaches a
desired confirmation margin.

The output of the Tortoise is based on special bits — “votes” —
which are included in each bundle in the DAG (described in detail
in the subsections to follow). In order to guarantee exponentially
fast convergence of the Tortoise Protocol it is sufficient that honest
nodes vote for each particular bundle in a (moderately) coordinated
way. Bentov et. al. introduced the following (rather mild) definition
of [s, t]-consistent protocols.

IECC ’ 19, July 7–9, 2019, Okinawa, Japan Dmitrii Zhelezov and Oliver Fohrmann

Definition 4.1. A protocol Π is [s, t]-consistent if for any bundle
X in layer i , all honest nodes are in consensus about X whose layer
counter is in the interval [i + s, i + t].

If honest nodes vote [s, t]-consistently (based on the output of
Hare), the confidence of Tortoise on the validity of each particular
bundle will grow exponentially with the number of rounds passed
from the bundle publication. Such probabilistic finality is similar to
the mechanism of block confirmations for Bitcoin transactions.

Theorem 4.1. Assume honest nodes vote in a [s, t]-consistent way
(following the Hare protocol). Then for every bundle A generated in
the interval [starti , starti+1), the probability that two honest nodes
exist who disagree on the validity of A according to Tortoise protocol
at time starti + t is exp(−O(t)).

Theorem 4.1 is a rather powerful tool for quick finality: it allows
one to accept transactions without waiting for the Tortoise protocol
to reach enough confirmations relying on the fast Hare protocol
alone.

Corollary 4.1. Let X be a bundle published at round s . Assume
that the Hare protocol has successfully terminated with the output “X
is valid”. Then X will eventually be validated by the Tortoise protocol
with an arbitrary confirmation margin.

Proof. Since the Hare protocol has terminated, all honest nodes
will vote “X is valid” so the votes are [s, t]-consistent for any t after
the protocol termination time (i.e. they do not revert the decision).
Thus one can apply Theorem 4.1 so the probability that the local
execution of the Tortoise protocol by any honest node will produce
“X is invalid” in the future is neд(t). Since t can be taken arbitrarily
large, the claim follows. □

In particular, as long as the fast Hare consensus successfully
terminates, it’s safe to assume this decision is final.

We adopt the Snowball protocol for the Hare part. The nodes
ask random peers how they are going to vote. If after multiple
independent queries a node observes a bias towards a particular
decision, it joins the crowd. It turns out that if a node has been
convinced by random peers (i.e. the protocol has terminated for
this node) on some decision, with overwhelming probability all
other honest nodes will settle on that decision as well.

In rare occasions it may happen that the Hare protocol will
not provide high enough confidence by the time the vote has to
be included in the bundle, in which case the vote is neutral and
the outcome is decided by the Tortoise protocol later on. Even
without any assistance from Hare (i.e. even in a standalone mode)
the Tortoise protocol will eventually converge (i.e. reach any given
voting margin in absolute value). Let’s say the consensus is ϵ-final
if4

P(decision on X flips) < ϵ .

Theorem 4.2. For any given ϵ > 0 the Tortoise protocol eventually
reaches ϵ-final consensus about the validity of an arbitrary bundle X .

The main drawback is that without assistance from Hare it may
take some time before Tortoise accumulates enough voting margin
to become virtually irreversible. The crucial property is that this
4The probability distribution is assumed to be over all possible future realizations of
the local DAG of an honest node conditioned on the protocol assumptions.

Bundle (k+s, 1) Bundle (k+s, 2) Bundle (k+s, 3)

Bundle (k+t, 1) Bundle (k+t, 2) Bundle (k+t, 3)

Bundle (k, 1) Bundle (k, 2) Bundle (k, 3)

Decision period

+1

Rounds

Round k

Round k+s

Round k+t

Voting period

+1
+1

-1
-1

-1

(a) On-chain Tortoise voting

Node 1

How are you going to
vote?

How are you going to
vote?

How are you going to
vote?

How are you going to
vote?

Node 2

Node 4

Node 3

(b) Off-chain Hare consensus during
the decision period

Figure 1: Tortoise and Hare consensus

voting margin is observable, i.e. the corresponding portion of the
DAG may serve as a certificate proving to an offline merchant that
a transaction is virtually irreversible (similar to SPV certificates in
Bitcoin).

Theorems 4.1 and 4.2 have been proved in [2] under the following
conditions:

(1) Strong δ -synchronous network
(2) Adversarial PoC follows a stationary Poisson process (but

may have pre-generated reserves).

4.2 Tortoise protocol bundle header structure
The Tortoise protocol relies on parent references to previous bun-
dles embedded in a bundle. Since previous bundles are already in
a local view of each party, it suffices to include only merklized
roots of the parent hashes and thus bundle size overhead is O(1)
regardless of how many bundles are referenced.

Further, a bundle contains a milestone that is a Merkle root of all
bundles (according to the current DAG view, sorted in the canonical
order) in round i − E, where E is the epoch parameter. A sensible
value for E may be set to be approximately from hours to a few
months in the past (assuming rounds have approximately even
time). To ensure long-range consistency, we enforce the syntactic
bundle validity rule that immediate parents must have the same
milestone root.

Each honestly generated bundle in round i has the following
information:

(1) Timestamp Fullnode’s local time at which the bundle is pub-
lished

(2) Round number The round number of the bundle
(3) View edges Tips of the local view DAG at the moment a

bundle was submitted

HelixMesh: a consensus protocol for IoT IECC ’ 19, July 7–9, 2019, Okinawa, Japan

(4) Voting edges A {−1, 0, 1} vote for every syntactically and
contextually valid bundle in round ifk‼s through ifk‼t (where
the contextual validity is derived from the total ordering of
the bundles included in each round in the local view).

(5) A weak common coin bit A 0/1 bit of the weak common coin
toss.

(6) Before coin bit This bit indicates whether the bundle was
generated before the coin protocol ended (this is used to
“abstain” from voting in cases where the coin bit matters).

(7) Milestone Merkle root of all bundles in round i −E accessible
from the current bundle, sorted in the canonical order.

4.3 Tortoise protocol voting
Let s < t be fixed parameters. During rounds i to i + s − 1 the
off-chain Hare consensus kicks in but it may or may not succeed. In
any case, the node includes a vote V P

r (A) for each bundle A ∈ R(i)
in all in rounds r ∈ {i + s, i + s + 1, . . . , i + t − 1}, which reflects the
current opinion about the bundle freshness and validity. All further
votes are decided solely based on the local DAG G as described
by Algorithms 2 and 3. Here WeightedAvg() assigns weights to
bundles using the associated PoC value.

Algorithm 2 Tortoise protocol voting (B votes for A)

1: function Vote(A,B)
2: if B.round < A.round + s then ▷ Still deciding
3: return 0
4: end if
5: if A.round + s ≤ B.round < A.round + t then ▷ Vote

based on Hare consensus
6: return B.votes[A.hash]
7: end if
8: if not A.accessibleFrom(B) then ▷ This is an old branch
9: return −1
10: end if
11: vote ←WeightedAvg([Vote(A,B′) for B′ ∈ B.parents])
12: if |vote | ≤ θ then ▷ Vote margin is too low, use common

coin if not abstain
13: return B.be f oreCoinBit == 0 ? B.coinBit : 0
14: else
15: return Sign(vote)
16: end if
17: end function

Algorithm 3 Tortoise protocol decision whether A is included in
the ledger

1: function IsInLedger(A)
2: дlobalVote ←WeightedAvg([Vote(A,B) for B ∈ G])
3: if |дlobalVote | ≤ θ then ▷ This will not happen for old

enough bundles
4: return UNDECIDED
5: else
6: return дlobalVote > 0
7: end if
8: end function

An important feature of the Tortoise protocol is that it succeeds
whenever there is a small initial bias in voting of honest nodes. For
that reason, if the voting margin θ is low, the bias is enforced by
the weak common coin bit – a random bit most honest nodes agree
on.

4.4 Weak coin protocol
A weak coin with parameter pc ≤ 1

2 is a protocol which outputs a
single bit b ∈ {0, 1} and has the following properties:

(1) P(b = 0) ≥ pc
(2) P(b = 1) ≥ pc
(3) Before the beginning of the protocol, for every honest party

P , the adversary cannot guess the output of P with probabil-
ity more than 1fk‼pc .

A practical and efficient implementation with pc ≥ (1 − 2q)
was suggested by Micali [9]. For a round i , each P with public
key pkK and signing key skK publishes the signature of the string
(pkK | |i). Upon receipt, each party computes the hashes of all in-
coming messages and takes the least significant bit of the smallest
hash in the lexical order. Such an implementation is suitable for
UDP broadcasting and gossip-based aggregation.

5 HARE PROTOCOL
Even if the Hare protocol does not reach consensus, it will be
finalized by the Tortoise protocol later on. The Hare protocol for
a bundle X in our design eventually terminates with the decision
“VALID”, “INVALID” (when the confidence reaches a pre-defined
threshold). If by the time the Tortoise protocol has to include the
decision on X the Hare protocol is not terminated, the output is
“UNDECIDED” (inwhich case the vote is 0).When theHare protocol
terminates, we guarantee that with overwhelming probability all
honest nodes agree on the output and the decision is irreversible.

Below we consider an implementation based on the Snowball
protocol of Avalanche family [10]. The Snowball version is suited
for the permissionless setting as it is resilient against fullnode churn
and incomplete view of the network participants.

An alternative way to implement the Hare protocol is by select-
ing random committees of relatively small size for each round, and
let each committee run a version of BFT consensus (e.g. Honey-
BadgerBFT [8]). The way committees are chosen typically rely on
Verifiable Random Functions (e.g. Algorand [4]) or threshold sig-
natures (Dfinity [5]). The main challenge to design such a scheme
is to ensure that all participants agree on the committee members
and mitigate long-range and nothing-at-stake attacks. While it’s
a promising topic for future research, we do not consider it in the
present paper to keep it succinct.

5.1 Snowball-based hare protocol
The implementation is based on the Snowball protocol of theAvalanche
family [10]. For a bundleX published in round i , each party P keeps
a binary array holding the P ’s confidence on how to to vote for
X . The vote included by P in the bundles during “voting window”
rounds [i + t , i + s) is based on P ’s opinion about X at the time the
bundle is published.

The parameters α , β ,k should-be fine-tuned based on the secu-
rity assumptions, as discussed in [10].

IECC ’ 19, July 7–9, 2019, Okinawa, Japan Dmitrii Zhelezov and Oliver Fohrmann

Algorithm 4 Snowball initialization for a bundle X

1: procedure OnQuery(X)
2: if not IsInDAG then
3: Add(X)
4: Init(X)
5: end if
6: Respond(pre f)
7: end procedure
8: procedure Init(X)
9: Conf [+1] ← 0
10: Conf [−1] ← 0 ▷ The vote towards which we currently

lean
11: pre f ← {X has been received before starti+1 + δ } ? 1 : -1
12: Conf [pre f]++
13: last ← v
14: strike ← 0 ▷ Number of consecutive consistent queries
15: end procedure

Algorithm 5 Snowball loop for a single bundle

1: procedure SnowBallLoop
2: P ← SamplePeers(k)
3: v ′ ←

∑
p∈PQuery(p,X)

4: if |v ′ | ≤ αk then
5: strike ← 0
6: Continue
7: end if
8: vote ← Sign(v ′)
9: Conf [vote]++
10: if Conf [vote] > Conf [−vote] then
11: pre f ← vote
12: end if
13: if last , vote then
14: strike ← 0
15: last ← vote
16: else
17: strike++
18: end if
19: if strike > β then
20: Terminate(pre f > 0 ? ’VALID’ : ’INVALID’)
21: end if
22: end procedure

For each bundle an instance of Snowball is run, resulting in a
binary consensus indicating if the bundle is included in the round.

The advantage of the Snowball protocol is that it is seamlessly
integrated in the gossip protocol on the broadcasting phase. The
initial value for the bit is set simply based on the condition that the
first time a bundle is pulled from a peer is less (measured by the
local clock) than starti+1 + δ .

The peers are sampled with weights proportional to PoC over the
lastM rounds. The parameterM should be taken large enough so
that whp adversarial nodes have weight at most q of the population
whp, as guaranteed by 1. Note that it is not necessary for the honest
nodes to explicitly agree on the value of M . At the network level

sampling can be done using e.g. the FireFlies protocol [6] or using
more specialized UDP-only protocols.

It follows immediately from the guarantees of the Snowball
protocol that it will terminate in finite time whp. We also have
safety and liveness:

Theorem 5.1. There is a choice of parameters α , β ,k such that
with q ≤ 1

5 the following holds with overwhelming probability5:

(1) Liveness. If X was published by an honest node, all honest
nodes will terminate in the state VALID

(2) Safety. If X has been received by a fraction of less than q of
nodes by starti+1 + δ then all honest nodes will terminate in
the state INVALID

Proof. Liveness. Let N be the total number of nodes. Assume
WLOG that each node has equal weight, so that peers are sampled
from a uniform distribution.

It follows from the analysis in [10], Theorem 5 that if the sys-
tem is in a state that at least (1 − 2q)N nodes have pre f = x then
confidence will grow linearly with the number of Snowball loop
iterations, and thus all honest nodes will terminate with the out-
put corresponding to per f within a finite number of rounds in
expectation.

But if X is published by an honest bundle, all honest nodes will
receive it before starti+1 + δ , and thus the initial state is absorbing.

Safety. The same argument as for liveness, but now at least
(1 − 2q)N nodes start with pre f = −1.

□

6 CONCLUSION
Scalability is one of the major bottlenecks of present day blockhains
and significantly limits the number of use-cases for IoT.

The HelixMesh consensus protocol presented in the paper de-
parts from the usual all-to-all transaction broadcasting model and
the linear structure of blockchain in favour of the DAG structure
supporting concurrent writes. The protocol is agnostic with regard
to the semantics of the transaction. It scales up to thousands simul-
taneous bundle commitments per round, making it a robust Layer 1
protocol for an auditable log of IoT-sourced transactions. With the
conservative estimate of 1000 fullnodes as edge servers each pro-
viding access for 1000 IoT devices, it is projected to accommodate
up millions of connected sensors.

ACKNOWLEDGMENTS
The authorswould like thank Bhaskar Krishnamachari (USCViterbi),
Gowri Sankar (USC Viterbi), Daniel Cook (Helix Research), Matt
Niemerg (AlephZero) for valuable inputs and insightful discussions.

REFERENCES
[1] M. Al-Bassam, A. Sonnino, and V.k Buterin. 2018. Fraud Proofs: Maximis-

ing Light Client Security and Scaling Blockchains with Dishonest Majorities.
arXiv:1809.09044 (2018).

[2] I. Bentov, P. Hubáĉek, T. Moran, and A. Nadleret. [n. d.]. Tortoise and Hares
Consensus: the Meshcash framework for incentive-compatible, scalable cryp-
tocurrencies. ePrint: https://eprint.iacr.org/2017/300.pdf.

[3] C. Decker and R. Wattenhofer. 2013. Information propagation in the bitcoin
network. In IEEE P2P 2013 Proceedings. IEEE, 1–10.

5Say, at least 1 − 2−100

HelixMesh: a consensus protocol for IoT IECC ’ 19, July 7–9, 2019, Okinawa, Japan

[4] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich. 2017. Algorand: Scaling
byzantine agreements for cryptocurrencies. In Proceedings of the 26th Symposium
on Operating Systems Principles. ACM, 51–68.

[5] Timo Hanke, Mahnush Movahedi, and Dominic Williams. 2018. Dfinity technol-
ogy overview series, consensus system. arXiv:1805.04548 (2018).

[6] Håvard Johansen, André Allavena, and Robbert Van Renesse. 2006. Fireflies: scal-
able support for intrusion-tolerant network overlays. In ACM SIGOPS Operating
Systems Review, Vol. 40. ACM, 3–13.

[7] U. Kalman and et. al. [n. d.]. bloXroute: A Scalable Trustless Blockchain Distribu-
tion Network. https://bit.ly/306YsIH.

[8] A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song. 2016. The HoneyBadger of BFT
Protocols. ePrint: https://eprint.iacr.org/2016/199.

[9] S.Micali. [n. d.]. Byzantine Agreement, Made Trivial. preprint.
[10] Team Rocket. [n. d.]. Snowflake to Avalanche: A Novel Metastable Consensus

Protocol Family for Cryptocurrencies. preprint.

